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The dependence on applied shear of the morphological and rheological properties of diffusive binary
systems after a quench from the disordered state into the coexistence region is investigated. In particular
the behavior of the late-time transversal size of domains Ly and of the maximum of excess viscosity ����M

is considered. Numerical results show the existence of two regimes corresponding to weak and strong shear
separated by a shear rate of the order of �c�1/ tD where tD is the diffusive time. Ly and ����M behave
as Ly ��−� and ����M ��� with �=�s=0.18±0.02, �=�s=−2.00±0.01 and �=�w=0.25±0.01,
�=�w=−0.68±0.04 in the strong- and weak-shear regimes, respectively. Differently from what was found in
systems with fluctuating velocity field, it is confirmed that domains continue to grow at all times.
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I. INTRODUCTION

When a binary mixture is quenched from a disordered
state into the coexistence region, domains of the two phases
start to form and grow isotropically with power-law behav-
ior. The growth exponent depends on the physical mecha-
nism operating during phase separation, and “universal” be-
havior is generally observed. For the purely diffusive case,
the typical size of domains grows as L� t1/3 �1�.

If, during the phase separation process, a shear flow acts
on the system, the above picture changes under many re-
spects. Domains become elongated in the direction of the
flow and, if the applied velocity has profile vx=�y in the x
direction �� is the shear rate�, average domain sizes in the
flow and shear directions typically verify the relation
Lx��tLy �2�. The morphological evolution is reflected in a
peculiar rheological behavior observed in many theoretical
�3,4� and experimental �5,6� studies. An excess viscosity has
been measured first reaching a maximum, when the domain
network is maximally stretched, and then decreasing when,
at higher strain, ruptures and breakups occur in the network.
Late-time configurations observed in simulations and experi-
ments typically consist of almost parallel stringlike domains,
with the value of Ly depending on the shear rate �5,7–9�.

An important question for phase separating systems under
shear is whether coarsening continues indefinitely, as in the
case without flow, or whether a steady state is reached at late
times characterized by finite values of the average domain
size. The fast growth in the flow direction makes finite-size
effects quite relevant also in experimental systems so that it
is not easy to answer to the above question. Recent simula-
tions taking into account fluctuations of the velocity field
suggest that an asymptotic steady state with finite domain
size is stable �10�. This agrees with hydrodynamic scaling
analyses predicting a stationary state from the balance

between interfacial and inertial or viscous stresses �9,11�.
There is less agreement on the value of the exponent � de-
scribing the dependence of Ly on the shear rate �Ly ��−��. A
value between 1/4 and 1/3 is found in experiments �5� and
�=1/3 in simulations �9�, while, even with some caution,
the value �=3/4 is proposed in Ref. �10�.

On the other hand, theories in which the velocity field
does not fluctuate—e.g., model B �12� with a shear convec-
tive term �1�—predict indefinite coarsening when analyzed
in the large-N limit �13,14�. These theories can describe
polymer melts and blends with large polymerization index
�1�. Simulations of these theories give late-time configura-
tions always formed by stringlike domains, and also in this
case one could ask about the dependence of the transversal
size on the shear rate �8,9�.

In this paper we complete our previous studies on the
phase separation of a diffusive system in the presence of a
fixed velocity profile �2,3�. Even if we do not find evidence
of asymptotic steady states, we will see that an exponent �
can be defined also in this model. As already suggested in
Ref. �7�, our results show that two regimes can be clearly
observed corresponding to weak and strong shear. The re-
gimes are separated by the value �c corresponding to �ctD
�1 where tD is the diffusion time of the system. Here we
describe these regimes in terms of the value of � and of the
behavior of the excess viscosity maximum ����M. An expo-
nent � can be defined as ����M ��� �11�, and with respect to
previous work we clearly see that the two regimes are char-
acterized by different values of � and �. We find clear evi-
dence of the exponent �=−2 predicted in the strong-shear
regime �15�.

The paper is organized as follows. In Sec. II the model is
introduced. Section III is devoted to the presentation and
discussion of results, and finally some conclusions are drawn
in Sec. IV.

II. THE MODEL

We consider the Ginzburg-Landau free energy
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where � is the order parameter representing the concentra-
tion difference between the two components. The polynomial
terms in the free-energy density have a single-well structure
when a	0, b
0 and describe the disordered state of the
mixture with �eq=0. In the ordered state, for a
0, b
0,
two symmetric minima are located at �eq= ±a /b. These are
the equilibrium values of the order parameter in the low-
temperature limit. The gradient-squared term in Eq. �1� with
�
0 takes into account the energy cost of interfaces be-
tween domains of different composition. The equilibrium
profile between the two coexisting bulk phases can be com-
puted in the one-dimensional case and is ��x�=�eqtanh� 2x

�
�,

giving �16� a surface tension

� =
2

3
�eq

2 2a� �2�

and an interfacial width

� = 22�

a
. �3�

The thermodynamic properties of the system follow from the
free energy �1�. The chemical potential difference between
the two components is given by

� =
�F
��

= − a� + b�3 − ��2� , �4�

and the kinetics is described by the convection-diffusion
equation

��

�t
+ �� · ��v�� = ��2��� , �5�

where the order parameter is coupled to the external velocity
field v� =�ye�x with e�x the unit vector in the x direction. � is a
mobility coefficient. When hydrodynamics comes into play a
model taking into account also the contribution coming from
the Navier-Stokes equation should be used �17�.

The only length and time scales of the problem that can

be built from macroscopic quantities are � and tD=
�3�eq

2

��
�1,18�. Equation �5� can be cast in a dimensionless form after
a redefinition of time, space, and field scales by tD, �, and
�eq, respectively �19�. There is only one dimensionless quan-
tity which appears in the dimensionless equation; it is given
by �=�tD which characterizes the strength of the shear flow.

In order to quantify the effect of shear on growth of do-
mains, the average size Ly of domains in the y direction
�shear direction� has been computed from the first zero-point
crossing of the pair-correlation function. As a check, we also
evaluated the domain size in the shear direction from the
relation

Ry�t� = �

	 dk�C�k�,t�

	 dk��ky�C�k�,t�
, �6�

where C�k� , t�= ���k� , t���−k� , t�� is the structure factor, with
��k� , t� being the Fourier transform of the order parameter �
and �¯� denoting an ensemble average.

Of experimental interest are also the rheological indica-
tors, among which the excess viscosity defined as �15,20�

�� = −
1

�W2 	 dr��x��y� , �7�

where W is the width of the lattice �the same in all the di-
rections�.

FIG. 1. Log-log plot of the average size Ly of domains along the
shear direction at late times as a function of the shear rate � for two
different widths of the system: W=512 ��� and 1024 ���. Solid
and dashed lines have slopes −0.25 and −0.18, respectively, and are
the best fits to W=1024 data. Ly and � are measured in units of �x
and �t, respectively.

FIG. 2. Log-log plot of the average size Ly of domains along the
shear direction at late times as a function of the width W of the
system for two different values of the shear rate: �=5�10−3 �left
panel� and 5�10−2 �right panel�. Solid lines have slopes 0.11 and
0.09in the left and right panels, respectively. Ly and W are measured
in units of �x.

G. GONNELLA AND A. LAMURA PHYSICAL REVIEW E 75, 011501 �2007�

011501-2



We have simulated Eq. �5� in two dimensions by a first-
order Euler discretization scheme �19� on a regular lattice.
Periodic boundary conditions have been implemented in
the x direction; Lees-Edwards boundary conditions �21�
were used in the y direction. These boundary conditions,
originally developed for molecular dynamic simulations of
fluids in shear, require the identification of a point at �x ,0�
with the one located at �x+�W�t ,W�, where �t is the time
discretization interval.

III. RESULTS AND DISCUSSION

The system was initialized in a high-temperature disor-
dered state, and the evolution was studied with a
0. Simu-
lations were run using lattices of size W=128, 256, 512,
1024, 2048 with space step �x=0.5,1. We have not observed
significant differences between these two choices of �x.
The results shown here were obtained with � varying in
the range �5�10−4 ,5�10−1�, �x=1, �t=0.01 for ��10−1

and �t=0.001 for �
10−1, ���=0, and averaging over ten
independent realizations of the system for each choice of
� and W. We have chosen �=a=b=�=1. We can then esti-
mate �=22, �=22/3, �eq

2 =1, and tD=24 in �x and �t
units. ��1 corresponds to the value �c=1/ tD�0.04.

We are interested in studying the behavior of the system
at long times ��t�1� when configurations are characterized

by stringlike domains along the y direction. We monitored
the quantities Ly and Ry, previously defined, which both satu-
rate to a constant value in a single run at fixed � �see later
comments�. We used this value to study their dependence on
the shear rate � and on the system size W.

In Fig. 1 we report on a log-log scale the value of Ly as a
function of � for W=512,1024. We note some main features.
The value of Ly depends on the size W of the system and
grows as W increases. In the following we will discuss with
more details this point. Moreover, the data seem to indicate
that a scaling relation Ly ��−� holds but with two different
exponents for different regions of the shear rate. We tried to
fit data points by using a least-squares fit. By fitting all the
points together, we found a low correlation coefficient r, so
we divided points into two groups. By doing so and using
W=1024 data, we found two scaling exponents
�w=0.25±0.01 with rw=−0.997 for ��10−2 and
�s=0.18±0.02 with rs=−0.992 for �
10−2. Scaling expo-
nents computed by using W=512 data are consistent with the
previous ones within error bars, indicating that the scaling
exponents are independent of the size of the system. Our data
seem then to indicate that the scaling exponents are different
in the weak �quantities in this regime are denoted by the
subscript w� and in the strong shear �subscript s� regimes,
suggesting the existence of a transition at �ctD�1 between
the two regimes. The previous estimate �c�4�10−2 agrees
well with numerical results which suggest �c to be in the

FIG. 3. Sequence at consecu-
tive times of configurations of a
portion 256�256 of the whole
1024�1024 system for the case
with �=5�10−3.
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range �10−2 ,5�10−2�. All these results are consistent
with those obtained using Ry to monitor the size of domains.
Former studies without hydrodynamics did not find any
indication of such a transition by looking at the transversal
size of domains, and the values �=0.21±0.03 �8� and
�=0.22±0.03 �9� were found. These values are compatible
with our results in both regimes within the error bars. A
possible reason for the differences we found is that we
considered systems with size considerably larger than that
�W=256� considered in Ref. �9�.

We then turned to investigate the dependence of Ly on
the size of the system W by keeping the shear rate fixed.
In Fig. 2 we show the plot of Ly as a function of W for two
values of �, one ��=5�10−3� in the weak- and the other
��=5�10−2� in the strong-shear regime. We observe that in
both cases Ly grows with W approximately as Ly �W�. It is a
slow growth which seems slightly faster in the weak-shear
regime. Best fits give �w=0.11±0.02 and �s=0.09±0.02.
These results seem to exclude the possibility of an
asymptotic steady state; however, they hold only on one de-
cade and are not conclusive. Unfortunately, accessing larger
systems becomes quite unfeasible due to required memory
and time resources.

So far, we have focused on late-time properties of the
systems. Actually, also in preasymptotic kinetics, differences
between the weak and strong regimes can be observed. A

typical pattern evolution can be seen in Figs. 3 and 4. Snap-
shots of a portion 256�256 of a system with size W=1024
are shown at consecutive times for �=5�10−3 and �=5
�10−2, respectively. After the usual early stage, when do-
mains are forming from the mixed initial state, a bicontinu-
ous structure is observed. The distortions produced by the
flow appear evident from �t�1 onward. The higher the
shear rate, the larger the anisotropies which appear at a given
�t. In the case at lower �, domains have more time to grow
before reaching �t=1 and this is reflected in their average
size which is larger compared to the case at higher shear rate.
In the meanwhile nonuniformities are formed in the system:
Regions with domains of different thickness can be clearly
observed. This typical feature of domains with two coexist-
ing different scales along the shear direction was already
pointed out in previous studies �2,3�. Small droplets are also
present, originating from the fragmentation of strained do-
mains which is more pronounced at a high shear rate. In this
latter case domains are more stringlike. This continuous
mechanism of stretching and breaking up of domains pro-
duces the presence of domains with two typical sizes until
patterns are made just of isolated domains completely
aligned with the flow direction and the shear acts only to
make them smoother. Finally, at the latest times shown, in-
terfaces have become almost completely flat; both the con-
vective and the chemical potential terms in Eq. �5� cannot

FIG. 4. Sequence at consecu-
tive times of configurations of a
portion 256�256 of the whole
1024�1024 system for the case
with �=5�10−2.
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produce further growth, and the transversal domain size
remains constant.

We also computed the excess viscosity �� as a function
of the strain. After the system is quenched below the critical
point, the excess viscosity increases with time, forming two
peaks, as already observed in previous studies �3,9,22,23�.
The highest peak is located at �t�2−3 in the weak-shear
regime �9,8,11,13�, while its position on the time axis moves
rightwards as the shear rate is increased in the strong-shear
regime. The time of the peak position in �� corresponds to
the time when domains are maximally stretched in the flow
direction, producing an increase in the effective value of vis-
cosity of the mixture �20�. Subsequent ruptures of domains
determine a decrease of ��. The maximum excess viscosity
����M is expected to scale with the shear rate as
����M ��� with �w=−2/3 �11� and �s=−2 �15�. Our results
for the excess viscosity are shown in Fig. 5 on a log-log scale
as a function of the shear rate for two sizes of the system. We
do not find any dependence on the size W: Points are well
within error bars. The existence of a transition from the
weak- to the strong-shear regime located in the range
�10−2 ,5�10−2� is quite clear and evident here, which is con-
sistent with the results of Fig. 1. Best fits to data points give
�w=−0.68±0.04 and �s=−2.00±0.01, in excellent agreement

with theoretical predictions. While the value �w=−2/3 has
already been found in simulations �8,9�, to the best of our
knowledge this is the first time that the exponent �s is
observed.

IV. CONCLUSIONS

In this paper we have considered a phase separating
binary mixture under the action of a shear flow. We studied
an extension of model B with a convective term induced
by the velocity profile v� =�ye�x. As previous studies of this
system had already shown, late-time configurations typically
consist of stringlike domains with the transversal size Ly de-
creasing for increasing values of �. The main purpose here
was to analyze the dependence of Ly on � and to look for the
existence of different shear regimes.

With our simulations we confirm previous results with
continuous growth of domains at all times, as also predicted
by the large-N approximation of the model �13,14�. Due to
finite-size effects, indefinite growth at asymptotic times can
be shown only considering systems with different sizes as we
did in the present paper.

Our main finding is that there are two regimes character-
ized by different values of the exponent �. We checked that
these values are stable with respect to the variation of the
size of the system. We found �=0.18±0.02 for �
�c and
�=0.25±0.01 for �	�c with �c�1/ tD, tD being the diffu-
sive time scale for the system. Therefore we see the
existence of a different behavior in the weak- and strong-
shear regimes. The existence of a transition between
weak- and strong-shear regimes appears also in the behavior
of the maximum of the excess viscosity ����M. In Ref. �7�
the existence of such a possible transition was found by
looking at the behavior of the first normal stress. We found
����M ��� with �=−2.00±0.01 and �=−0.68±0.04 in the
strong- and weak-shear regimes, respectively. Finally, we ob-
serve that actually the whole morphological evolution is in-
fluenced by the values of the shear rate. A quantitative analy-
sis of this influence, not presented in the work, could be
based on the use of morphological indicators such as
Minkowski functionals �24�.
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